

1

14

WETLAND RESOURCE UNITS: APPROACH

- The resource units (RUs) are the building blocks of any reserve study
- The delineation of the Wetland Resource Units (WRUs) was undertaken using a three-step approach:
 - -Step 1: Identification of potential priority wetland areas
 - -Step 2: Identification of criteria and scoring
 - -Step 3: Final selected priority WRUs
- The identification of WRUs is focused on identifying systems at an ecosystem level and is strongly reliant on knowing where important wetland systems are.
- Existing wetland coverages/knowledge had to be leveraged for this process

WATER IS LIFE - SANITATION IS DIGNITY

15

WETLAND RESOURCE QUALITY OBJECTIVES

21

WETLAND RESOURCE QUALITY OBJECTIVES

• RQOs for wetlands are vital for a variety of reasons not limited to:

WATER IS LIFE - SANITATION IS DIGNITY

WETLAND RQOs: DEVELOPING RQOs

- Specific indicators are key measurable elements that are linked to the different components and their sub-components. They need to be:
 - Quantifiable
 - Measurable
 - Verifiable
 - Enforceable
 - Sensitive
 - Representative
 - Cost-effective
- RQOs are based off these indicators as they provide specific criteria that the qualitative or quantitative RQOs aim to maintain or achieve

WATER IS LIFE - SANITATION IS DIGNITY

23

GROUNDWATER RESOURCE UNITS: APPROACH

- Objectives are to maintain water quality status quo and provide allocatable groundwater to users
- · Important for planning, licensing and monitoring
- · Consideration of Groundwater Reserve components
 - Recharge
 - Basic Human Needs
 - · Groundwater contribution to EWR/baseflow
- Existing monitoring data used for the assessment (Hydstra, WMS, Municipal where available)

WATER IS LIFE - SANITATION IS DIGNITY

24

GROUNDWATER RESOURCE UNITS: APPROACH

Criteria

- · Groundwater use (WARMS, NGA, density)
- · Strategic GW Areas (SW, GW, SW-GW)
- Groundwater Dependency
- Stress Index
- Government Control Areas
- Water Quality
- · Baseflow Component (new)

			Dependency		Areas	(tc)	on GW (Baseflow)	(total 35)	% score	(1-3)
andsbos & Un-named tributary	1	5	1	1	1	- 4	5	28	51.4	2
Storms & Kleinbos	1	2	1	1	1	4	- 5	15	42.9	2
OC Kruis & Elands		2	3	1	1	4	5	20	57.1	1
Groot & Klip	5	2	3	3	1	4	5	23	65.7	1
Klasies & Tsitsikamma	5	2	3	4	1	4	4	23	65.7	1
lipdrift & Un-named tributary	5	2	3	5	1	3	4	23	65.7	1
From	3	2	1	2	1	4	4	17	48.6	2
K908 -		2	1	2	1	1	- 4	14	40.0	2
	Storms & Kleinbos Kruis & Elands Groot & Klip Klasies & Taltakarrma lpdrift & Un-named tributary		Storms & Kleinbox 1 2	Storm & Minister Route & Elands 4 2 3 Crook & File 5 2 3 Crook & File 5 2 3 Xissin & Tulkikurma 5 2	Stormak Extendos 1	Storms & Mainbox 1 2 1 1 1	Scormak Direitors 1 2 1 1 4 Kossi & Elands 4 2 3 1 1 4 Crocot & Dip 5 2 3 3 1 4 Crocot & Dip 5 2 3 3 1 4 Klassi & Elatkorma 5 2 3 4 1 4 Crocot & Dip 5 2 3 5 5 1 3 Crocot & Dip 5 5 2 3 5 5 3 3 Crocot & Dip 5 5 5 5 3 Crocot & Dip 5 5 5 5 3 Crocot & Dip 5 5 5 5 5 Crocot & Dip 5 5 5 5 Crocot & Dip 5 Crocot	Scorma Extended 1 2 1 1 1 4 5 Extra Extended 4 2 3 1 1 4 5 Concel & Extra Ex	Stemma Strickens 1 2 1 1 4 5 12 12 13 1 4 5 12 13 14 15 12 15 14 15 12 15 15 15 15 15 15	

WATER IS LIFE - SANITATION IS DIGNITY

26

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

Component	Description of Approach	Conditions	Special
Quantity and Aquifer	Water Levels Abstraction Rates Determination of protection zones	Set maximum drawdown of abstraction borehole to borehole critical depth Set peak maximum regional drawdown to maximum regional observed drawdown Set long term regional drawdown limit to the 75th percentile regional observed drawdown	In the absence of monitoring points, establish monitoring station through hydrocensus, and set limits from baseline monitoring
	Abstraction Rates	To be uploaded monthly	
	Protection zones	Determine from borehole yield testing	
Quality	Identify COCs	COCs derived from available monitoring data Set peak result to maximum reported concentration of monitoring station Set long term trend limit to 75" percentile of monitoring station	Set COCs based on SPR groundwater users Apply TWQG for SPR use until baseline water quality can be established from identified monitoring station
Ecological commitment	Protection zones	Determine from borehole yield testing	

WATER IS LIFE - SANITATION IS DIGNITY

GROUNDWATER RESOURCE UNITS: APPROACH

- Groundwater resource unit delineation was based on aquifer type (primary aquifer, secondary aquifer, karst aquifer) and other physical, management and/or functional criteria
- Quaternary catchment boundaries which formed the basic unit for the GW Resource Directed Measures (GRDM) assessment
- The project area comprises 19 No. IUAs, with 345 No. quaternary catchments
- The delineation of 48 Groundwater Resource Units in previous stages
- GWRUs considered various criteria at the quaternary catchment level, and were then proritised based on average weighting, with sub categories applying
- % Score per quaternary developed and final priority based on a scalable ranking system
- · GWRU was assigned the highest quaternary priority score listed

WATER IS LIFE - SANITATION IS DIGNITY

25

RESOURCE QUALITY OBJECTIVES : GROUNDWATER

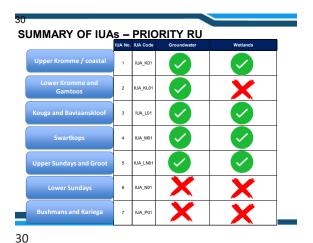
Groundwater

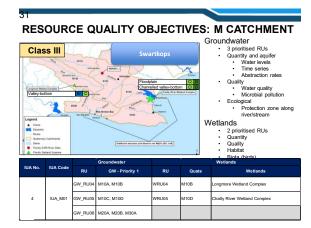
- Approach:
 - · Data retrieved from all in-field assessments for this study
 - · Priority groundwater:
 - · RQOs for indicators (high confidences)
 - · Abstraction rates, water levels, COCs
 - Water Levels Hydstra
 - Chem WMS

IUA	QUAT	CRU	OW use (WARMS)	Strat GW areas	GW Dependency		Govt Control Areas	GW Quality - (EC)	Ecoretiance on GW (Saseflow)	Overall score (total 35)	% score	Priority (1-3)
	K90E		5	1	1	5	1	3	3	19	54.3	1
	K90F	Gw_ru02	5	1	3	5	1	3	3	21	60.0	1
	K90G	1	5	1	3	5	1	4	3	22	62.9	1
IUA KI01	K90C		3	1	1	5	1	3	2	16	45.7	2
IUA KUU1	K90D	1	3	1	1	3	1	3	3	15	42.9	2
1	L90A	1	2	1	2	2	1	3	2	13	37.1	2
1	L908	1	1	1	2	1	1	2	3	11	31.4	2
	L90C	1	2	1	2	1	1	2	3	12	34.3	2

WATER IS LIFE - SANITATION IS DIGNITY

27


RESOURCE QUALITY OBJECTIVES WETLANDS AND GROUNDWATER



Ground Truth groundtruth.co.z

WATER IS LIFE - SANITATION IS DIGNITY

29

31

RESOURCE QUALITY OBJECTIVES: WRU05 - Chatty Wetland Complex

WRU	Wetland Name	Туре	PES	EIS	BAS	Component Prioritised
				A	C/D	Habitat –Ecological Condition
WRU	Chatty River Wetland	Floodplain	D			Quality – Water Quality Parameters
05	Complex	omplex	D			Habitat –Ecological Condition
		Channelled Valley-Bottom		A	C/D	Quality – Water Quality Parameters

32

33

RESOURCE QUALITY OBJECTIVES: WRU05 - Chatty Wetland Complex

Туре	Component prioritised	Indicator	RQO	Management and Mitigation Measures
Floodplain	Habitat Eoological Condition	Desktop and field verified PES category based on a Level 18 WET- Health assessment undertaken for the Chatty River floodplain welland.	The PES of the Chatty River floodplain wetland should not fall below the BAS of C/D.	Every 3-5 years, report the WET-Health Level 18 assessment carried out in this baseline assessment which was baseline primary in land-cover types meaning the property of the
	Quality – Water Quality Parameters	Estuary indicators apply (see water quality related estuary indicators for the Swartkops Estuary)	Estuary RQOs apply (see Swartkops Estuary RQO).	Estuary water quality numerical limits apply to the Chatty River floodplain. A bi-annual water quality monitoring program must be set up to monitor the water quality at the outflow of the Chatty River floodplain wetland. These water quality tests must be undertaken twice a year.

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA M01 -GWRU05 IUA Prioritised GWRU Hydstra SiteWMS Site WATER IS LIFE - SANITATION IS DIGNITY

34 35

RESOURCE QUALITY OBJECTIVES : GROUNDWATER IUA M01 - GWRU04

Component	RQO	Indicatos/Measure	Numeric Limit	
		Abstraction rates - Monthly Water Balance	Q < Average recharge per hectare Q < sustainable yield determined by yield test	
	increased level of assessment required;	Recharge estimate Reserve determination Delineation of smaller sub regions	•	
	Medium to long term (1 to 5 years) water level trends	Groundwater levels at active monitoring beneficles using Groundwater Monitoring Guidelines Time series water levels - Monthly	Active monitoring site avaitable: None, hydrocensus Identify monitoring site - hydrocensus Peak drawdown in abstraction borehole < crisical depth Regional drawdown < 75th percentile of identified monitorin point	
	other protection zone (L)	Radius of influence (r). $r = 1.5^{\circ}\sqrt{(1^{\circ})^{\circ}}$), $T = Transmissivity(m^2/d)$, $t = Time(days)$, $S = Storativity$ $L = (T^{\circ})/R$, $T = Transmissivity(m\Delta/d)$, $i = Groundwater$ Gradient, $R = Recharge(m/d)$	Determine from yield test data r < L(m)	
Quality		COCs Time series water quality (Quarterly / Bi annual)	Active monitoring site available: None, hydrocensus identify water use - hydrocensus Set limits based on baseline water quality or SAWQG TWQR to identified use	
	Protection zone from microbial pollution	Microbial radius (r). r = 2(0.28*T) + 53	r < L(m)	
Ecological	water courses Protection zone for watercourse is required to	L= (T*i)/R, T=Transmissivity(m2/d), i=Groundwater Gradient, R=Recharge(m/d) Time series water texts - Monthly Abstraction rates - Monthly	Determine from yield test data r < L(m)	

WATER IS LIFE - SANITATION IS DIGNITY

36

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA M01 – GWRU05

	Water Level Stats									
min Lev	18.41	6.99	30.78	4.	00	37.42	17.47	,		
max Lev	24.40	10.77	49.21	30	.20	42.25	23.49	AVG		
Diff (s)	5.99	3.78	18.43	26	.20	4.83	6.02	10.87		
75th (s)	4.57	2.87	8.17	17	.32	3.68	4.14	6.79		
7311(3) 437 237 337 337										
		CL	EC	F	NO3	2 N	IA.	SO4		

Chem Stats					
89782	46				
98062	2				
98067	2				
102367	54				

38

RESOURCE QUALITY OBJECTIVES : GROUNDWATER IUA M01 - GWRU05

Sub Component	Indicator/Measure	Numeric Limit			
Water Levels	Groundwater levels at active monitoring boreholes using Groundwater Monitoring Guidelines Time series water levels - Monthly	Regional peak groundwater < 5.2 m drawdown			
	Active monitoring site available : 6 No. time series Peak drawdown in abstraction borehole < critical depth	Regional long term < 75th percentile of 3.1 groundwater drawdown			
Compounds of Concern	COCs, Time series water quality (Quarterly / Bi annual) Active monitoring site available: 38 No. sites, 2 No. time series	Long term trend < 75th percentile (mg/I) for COCs;			
	Nutrients	NO3/NO2 < 0.2	NO3/NO2 < 0.3		
	Salts	EC<31	EC < 18		
	Sulphates	SO4 < 12	S04 < 8		
	Other	Na < 47 C1 < 87 F < 0.2 Pb < 0.02	Na < 19 Cl < 36 F < 0.2 Pb < 0.02		

WATER IS LIFE - SANITATION IS DIGNITY

40

RESOURCE QUALITY OBJECTIVES : GROUNDWATER IUA M01 - GWRU04

Component	Sub Component	Indicator/Measure	Numeric Limit		
Quantity	Water Levels	Groundwater levels at active monitoring boreholes using	Hydrocensus		
and Aquifer		Groundwater Monitoring Guidelines Time series water levels - Monthly	Identify monitoring site - hydrocensus		
		Active monitoring site available : None Peak drawdown in abstraction borehole < critical depth	Regional drawdown < 75th percentile of identified monitorin		
Concern		COCs, Time series water quality (Quarterly / Bi annual) Active monitoring site available : None	Hydrocensus Identify monitoring site		
		Peak result < maximum of monitoring boreholes	Identify water use and COCs Long term trend < 75th percentile (mg/l) for COCs;		
		Nutrients			
		Salts	Set limits based on baseline water quality or SAWQG TWQR for		
		Sulphates	identified use		
	ľ	Other			

WATER IS LIFE - SANITATION IS DIGNITY

37

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA M01 – GWRU05

erico	Quate		Sub Component	RQO Navative	Indicator Measure	Numeric Limit	
w_rudS		Quantity and Aquiter	Water Balance			Q «Average recharge per hectar Q « sustaina ble yield determine	
			Street	For large abstractions, or stressed calchments, increased level of a ssessment required; Desktop, Rupid, Intermediats, Comprehensive.	Bacharge extinutes - Bassenvi determination Delizeation of smaller sub-regions		
			Water Levels	Medium to long term (1 to 5 years) water level trends bused on drawdown) must show recovery	Time and a contra leads. Manthly	Regional peak groundwater < 5.2 m drawdown Regional long term < 75th percentile of 3.8 m groundwater drawdown	
			Protection Zones	other protection zone (L)	Radius of influence (r), r = 1.5 °/ (1° 4°S), 1° Florensia solvinje n' vir, n' n'		
		Quality	Compounds of Concern	Preserve existing water quality, Medium to long term (1 to 5 years) water quality must not exceed 75th percentile of monitoring data point	CDCs, Time series water quality (Quarterly / Bi annual) Active monitoring site available : 28 No. sites, 2 No. time series	Long term trend < 75th percentile	(mg/l) for CDCs;
					Nutrients	NO3W02<0.2	N03/N02 < 0.3
					Salts	CC<21	EC< 18
					Sulphates	SO4 < 12	904×8
						F<02	Na < 19 Cl < 36 F < 0.2 Pa < 0.02
					Microbial radius (r). r = 2(0.29*T) + 53	< L(m)	
		Scological	Protection Zone	Protection zone for watercourse is required to		Determine from yield test data r < L(m)	

39

RESOURCE QUALITY OBJECTIVES: L CATCHMENT

Groundwater

• 1 prioritised RUs

• Quantity and aquifer

• Water levels

• Time series

• Abstraction rates

- Quality
 Water quality
 Microbial pollution
- Microbial pollution
 Ecological
 Protection zone along river/stream

Wetlands

- 1 prioritised RUs Quantity Quality Habitat Biota (birds)

IUA_L01 L82B and L82D WRU03

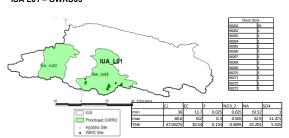
RESOURCE QUALITY OBJECTIVES: WRU03-KRAKEEL WETLAND COMPLEX

WRU	Wetland Name	Туре	PES	EIS	BAS	Component Prioritised
WRU	Krakeel Wetland	Valley-Bottom	D		0.0	Habitat Ecological Condition
03	Krakeel Wetland Complex	valley-Bottom	U	Very High	C/D	Habitat – IAPs

WATER IS LIFE - SANITATION IS DIGNITY

42

RESOURCE QUALITY OBJECTIVES: WRU03-KRAKEEL WETLAND COMPLEX


43

RESOURCE QUALITY OBJECTIVES: WRU03-KRAKEEL WETLAND COMPLEX

	prioritiaeu			
Valley Bottom	Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 1B WET-Health undertaken for the Krakeel welfand complex.	The PES of the Krakeel wetland complex should not fall below the BAS of C/D.	Lony 3.5 years, to repeat the WTT-health Lone 18 bescenerors indicated to 18 his baseline researcent, which was based primarily not endough to 18 his baseline researcent and the work pages in the welfand and the areas of influence in the catchiners, the recommended monthing comprise destage detection of land-cover change in the welfand and to acclaiment a well as all least 8 hours of feld welfaction for each welfand. Specific factors had need to land-cover includes: No further expension of agricultural activities, or other impringing land stage into the remaining natural areas of the welfands or the catchiners. No further destination of the stage of the welfands or the catchiners. No further destination in the water quality component of the PEE coor of the welfand. No further catchination that welfand is not the stage of the remaining infance areas of the welfand.
	Habitat – IAPs	Extent of IAPs within the wetland relative to the extent of the remaining natural or semi-natural wetland areas recorded in the baseline assessment.	IAPs extent within the remaining natural or semi-natural wetland areas should be managed to ensure it does not increase above a threshold that could be potentially harmful to the habitat of the Kraikeel wetland (£.5%).	Using available remote imagery, the extent of IAPs and removal efforts must be assessed annually. Bits vicils to confirm the extent and removal MPAS should be carried out every two years. The extent of IAPs within the termining natural or semi-catural vectoral cases within the Knakeel welfand should not exceed 2.0% of those total vectoral areas.

44

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA L01 - GWRU03

ATER IS LIFE - SANITATION IS DIGN

45

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA L01 – GWRU03

Sub Component	Indicator/Measure	Numeric Limit			
Water Levels	Groundwater levels at active monitoring boreholes using Groundwater Monitoring Guidelines Time series water levels - Monthly Active monitoring site available: None Peak drawdown in abstraction borehole < critical depth	Hydrocensus Identify monitoring site - hydroc Regional drawdown < 75th perce			
Compounds of Concern	COCs, Time series water quality (Quarterly / Bi annual) Active monitoring site available: 13 No. sites, 1 No. time series	Long term trend < 75th percentile (mg/l) for COCs;			
	Nutrients	NO3/NO2 < 0.5	NO3/NO2 < 0.4		
	Salts	EC<21	EC<21		
	Sulphates	904<7	SO4<6		
	Other	Na < 26 Cl < 48 F < 0.2	Na < 26 Cl < 48 F < 0.2		
			NO3/NO2 1 EC 170 SO4 250 NA 200 CL 300 F 1.5		

WATER IS LIFE - SANITATION IS DIGNITY

46

RESOURCE QUALITY OBJECTIVES: LN CATCHMENT Groundwater Class II 2 prioritised RUs
 Quantity and aquifer
 Water levels
 Time series
 Abstraction rates Quality
Water quality
Microbial pollution Protection zone along river/stream 1 prioritised RUs Quantity Quality Habitat Biota (birds) IUA Code WRU06 L21D eeuberg West

N14A, N14B and N14C

47

IUA_LN01

RESOURCE QUALITY OBJECTIVES: WRU06-SNEEUBERG WEST WETLAND

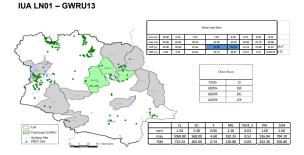
WR	Wetland Name	Туре	PES	EIS	BAS	Component Prioritised
		Valley-Bottom	С	High	С	Habitat -Ecological Condition
WRI 06	Sneeuberg Wetland Complex	valley-Bottom	C	riign	J	Habitat – IAPs
		Seep		High	В	Habitat – Ecological Condition

WATER IS LIFE - SANITATION IS DIGNITY

48

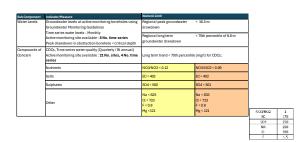
RESOURCE QUALITY OBJECTIVES:

49


RESOURCE QUALITY OBJECTIVES:

WRU06-SNEEUBERG WEST WETLAND

Туре	Component prioritised	Indicator	RQO	Mitigation/Monitoring Measures
Valley Bottom	Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 18 WET- Health assessment undertaken for the Sneeuberg West valley-bottom wetlands.	The PES of the Sneeuberg West valley-bottom wetlands should not fall below the REC, which is a C category.	Every 3-5 years, the WET-Health Level 18 assessment carried out in this baseline assessment needs to be repeated, which was based primarly on Intercover types in the wetfand and the execut of offluence in its cachment. This recommended monitoring comprises destays detection of land-cover August 19 and
	Quantity – flow volumes	The volume of inflows, throughflows, and outflows of the wetland, to ensure some degree of flow maintenance is achieved across the valley-bottom wetlands.	The volume of groundwater inflow into the valley-bottom wetlands should not be reduced further.	Some of the valley-bottom verticals are associated with discribe dyses, which are also facuous dies for boreloise in the Karco generally (Woodfoot and Cheesider 2000; Thus, some of these sellsy-bottom (Woodfoot and Cheesider 2000; Thus, some of these sellsy-bottom between the contract of the contract

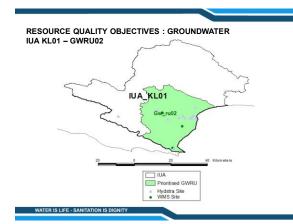

50

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

51

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA LN01 - GWRU13

WATER IS LIFE - SANITATION IS DIGNITY


52 53

RESOURCE QUALITY OBJECTIVES: K/L CATCHMENT

UA No.	IUA Code	RU	GW - Priority 1	RU	Quats	Wetlands
2	IUA_KL01	GW_RU02	K90F, K90G and K90E	×	х	х

WATER IS LIFE - SANITATION IS DIGNITY

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA KL01 - GWRU02

						Water Le	vel Stats				No e	xclusio	ons		
Г	min Lev	6.74	20.29	6.05	9.05	0.01	2.57	32.67	2.707	4.065	23.2	2 17.63	1		
Г	max Lev	36.95	5 49.35	26.97	40.10	9.05	12.32	72.17	8.37	16.9	33.9	43.19			
Γ	Diff (s)	30.21	29.00	20.92	31.05	9.04	9.75	39.50	5.663	12.835	10.6	25.56	20.39		
Г	75th (s)	10.09	23.92	3.49	21.65	5.36	6.44	20.92	3.917	7.367	9.477	5 21.65	12.21		
			CL	EC	F	NO3_2	NA	SO4	Al	L	FE	MN		Chen	Stats
	mir	n	68.03	25.50	0.03	0.01	37.69	0.60	0.0	06	0.01	0.00			
	ma	x	3325.60	1041.00	1.11	0.41	2083.10	463.50	0.6	54	0.47	0.23	85	1782	46
	751	h I	96.24	35.55	0.18	0.05	50.22	12.82	0.6	52	0.41	0.06			

WATER IS LIFE - SANITATION IS DIGNITY

55

54

RESOURCE QUALITY OBJECTIVES : GROUNDWATER IUA KL01 – GWRU02

Sub Component	Indicator/Measure	Numeric Limit	
Water Levels	Groundwater levels at active monitoring boreholes using Groundwater Monitoring Guidelines	Regional peak groundwater drawdown	< 20.4 m
	Time series water levels - Monthly Active monitoring site available : 11 No. time series Peak drawdown in abstraction borehole < critical depth	Regional long term groundwater drawdown	< 75th percentile of 12.2 m
Compounds of Concern	COCs, Time series water quality (Quarterly / Bi annual) Active monitoring site available: 4 No. sites, 2 No. time series	Long term trend < 75th percenti	e (mg/l) for COCs;
	Nutrients	NO3/NO2 < 0.05	NO3/NO2 < 0.05
	Salts	EC < 36	EC<36
	Sulphates	SO4 < 14	SO4 < 14
	Other	Na < 51 C1 < 97 F < 0.2 A1 < 0.7	Na < 50 Cl < 96 F < 0.2 Al < 0.7

56

IUA No. IUA Code RU GW - Priority 1 RU Quats Westends									
1 IUA_K01 K80E and K80F WROUT KOUK Tsisskamma Plains vielsand Complex		IUA No.	IUA Code	RU	GW - Priority 1	RU	Quats	Wetlands	
-			_			WRU01	K80A	Tsitsikamma Plains Wetland Complex	
	1	'	IUA_KUT			WRU02	K90A	Kromme Wetland	

57

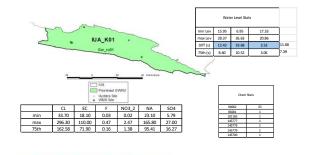
RESOURCE QUALITY OBJECTIVES:

RESOURCE QUALITY OBJECTIVES: WRU02-KROMME WETLAND

WRU	Wetland Name	Туре	PES	EIS	REC	Component Prioritised
						Habitat –Ecological Condition
WRU 02	J Kromme Wetland Complex	Unchannelled Valley-Bottom	A	Very High	A	Habitat – IAPs
						Habitat – Wetland Vegetation

WATER IS LIFE - SANITATION IS DIGNITY

60


RESOURCE QUALITY OBJECTIVES:

WRU02-KROMME WETLAND

Туре	Component prioritised	Indicator	RQO	Mitigation/Monitoring Measures
	Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 18 WET-Health assessment undertaken for the Kromme wetland complex.	The PES of the Kromme wetland complex should not fall below the REC of A.	Every 3-5 years, repeat the WET-Health Level 18 assessment curried out in the baseline assessment, which was baseline assessment, which was baseline assessment, which was baseline assessment in the vertical and the ensure of influence in its culcimient. The recommended and its culcimient, a well an at least 15 wors of field wirefaction for each water. Specific factors that need to be assessed include: No further opparation of agricultural societies or other imperging land uses into the remaining natural areas of the wetlands. No additional source water. See a participation of the wetlands or their culcimients. In additional source water-feeding audition in the wetlands or their culcimients.
Unchannelled Valley Bottom	Habitat – IAPs	Extent of IAPs within the wetland relative to the extent recorded in the baseline assessment.	IAPs extent should be managed to ensure it does not increase above the extent mapped in the baseline assessment (2.5%) for the Krugersland and Kompanjiesdrif wetlands.	Using available remote imagery, the extent of MPs and removal efforts must be assessed annually. Site visits to confirm the extent and removal of IMPs should be carried out every two years. The extent of IMPs within the Kromne wetland should got exceed 2.5% of the total wetland area.
	Habitat – Wetland Vegetation	Extent and overall health of the Prionium serratum (Palmiet) population within the wetland.	Maintain a viable Palmiet population within the Kromme wetland through the use of fire and targeted IAP clearing.	A fine record for the wetland must be established to ensure that infrequent fees are maintained within the wetland (every 9.12 years). Agreements with lamdowners need to be set up to ensure that burning can or does take place at the requisite times. Infield verification must occur to verify that IAPs are cleared before each fire and the extent of each fire. Controlled burns should only be carried out in the dry season.

60

RESOURCE QUALITY OBJECTIVES : GROUNDWATER IUA K01 – GWRU01

WATER IS LIFE - SANITATION IS DIGNITY

61

RESOURCE QUALITY OBJECTIVES : GROUNDWATER IUA K01 - GWRU01

Sub Component	Indicator/Heasure	NumericLimit			
Water Levels	Groundwater levels at active monitoring boreholes using Groundwater Monitoring Guidelines Time series water levels - Monthly Active monitoring site available : 3 No. time series Peak drawdown in abstraction borehole < critical depth	Regional peak groundwater drawdown Regional long term groundwater drawdown	< 11.9 m < 75th percentile of 7.4 m		
Compounds of Concern	COOs, Time series water quality (Quarterly / Bi annual) Active monitoring site available : 7 No. sites, 1 No. time series	Long term trend < 75th percentile (mg/l) for COCs;			
	Nutrients	N03/N02 < 1.4	N03/N02 < 1.4		
	Salts	EC<72	EC < 75		
	Sulphates	S04<17	904 < 17		
	Other	Na < 96 Cl < 97 F < 0.2 Mn < 0.3	Na < 105 Cl < 165 F < 0.2 Mn < 0.3		

WATER IS LIFE - SANITATION IS DIGNITY

62

THANK YOU!

Professional Service Provider: Stakeholder Engagement Specialist Ms Simindiel Mahlaba 076 177 4142 (033 343 2229 Stakeholder fishelig groundruth.co.za Project Director Dr Mark Graham mark@groundruth.co.za

Project Manager Mrs Kylie Farrell 0836864212 Kylie.farrell9@gmail.com Department of Water and Sanitation:
Project Manager
Mr Lawrence Mulangaphma
mulangaphumaL@dws.gov.za

Project Manager Ms Rendani Mudzanani mudzananiR@dws.gov.za

All study reports can be accessed from the DWS website: https://www.dws.gov.za/RDM/WRCS/

WATER IS LIFE - SANITATION IS DIGNITY